Согласно НРБ-99 основной нормируемой величиной при контроле радиационной безопасности облучения нейтронами является эффективная доза.
В табл. 8.8 Норм приведены значения эффективной дозы на единичный флюенс нейтронов с энергиями от тепловой до 20 МэВ. Расчеты проведены для двух крайних условий облучения: облучение в изотропном поле излучения (ИЗО) и облучение параллельным пучком в переднезадней геометрии (ПЗ). Такие нормированные значения эффективной дозы называются дозовыми коэффициентами и имеют размерность [Зв·см2]. Чтобы определить значение эффективной дозы, необходимо измерить флюенс и энергетическое распределение нейтронов в месте расположения облучаемого объекта, а затем, используя дозовые коэффициенты, вычислить это значение. Спектрометров, охватывающих диапазон энергий нейтронов от тепловых до нескольких десятков МэВ, не существует, поэтому в процессе измерений определяют не эффективную дозу, а ее эквивалент, который, с одной стороны, ни при каких значениях энергии не меньше значения эффективной дозы, а с другой стороны, энергетическая зависимость эквивалента дозы близка к энергетической зависимости самой эффективной дозы. Согласно рекомендациям МКРЗ, в качестве такого эквивалента следует использовать амбиентный эквивалент дозы .
Все используемые в настоящее время дозиметры-радиометры нейтронов для оперативных измерений основаны на одном и том же физическом принципе регистрации плотности потока тепловых нейтронов в центре полиэтиленового замедлителя. Тепловые нейтроны в центре замедлителя образуются в результате замедления нейтронов всех энергий. Размер замедлителя подбирается таким образом, чтобы плотность потока тепловых нейтронов, образованных от нейтронов любой энергии, была пропорциональна мощности амбиентного эквивалента дозы нейтронов этой же энергии. Для того, чтобы улучшить эту пропорциональность, замедлитель делают комбинированным: замедлитель представляет собой две сферы, вложенные друг в друга (рис. 9.1). Большая сфера имеет диаметр 24 см, маленькая 15 см, кроме того, сфера диаметром 15 см покрыта тонким слоем кадмия. Для такого дозиметра нейтронов с комбинированным замедлителем зависимость чувствительности от энергии нейтронов достаточно хорошо повторяет энергетическую зависимость амбиентного эквивалента дозы в диапазоне от 10 кэВ до 5 МэВ, т.е. охватывает практически весь спектр нейтронов, возникающих при делении ядер.
Рис. 9.1. Устройство прибора для измерения мощности эквивалента дозы нейтронов
Тепловые нейтроны регистрируются небольшим детектором, который вставляется внутрь меньшей сферы. Этот же детектор может быть использован для измерения плотности потока только тепловых нейтронов, если извлечь его из замедляющей сферы.
В отдельных случаях все-таки может возникнуть потребность в проведении измерений спектра нейтронов, например, когда требуется уточнить параметры биологической защиты. Для этого используются дозиметры-спектрометры нейтронов с набором замедлителей в виде сфер различного диаметра. Такой спектрометр называется мультисферным спектрометром.
Измерения спектров нейтронов позволяют более точно провести оценку мощности амбиентного эквивалента дозы, чем в случае, если эти измерения были выполнены с помощью дозиметра-радиометра. Это связано с тем, что при наличии в спектре большого количества нейтронов с энергией ниже 0.1 МэВ результат измерения с дозиметром-радиометром будет иметь значительную погрешность (50 и более %).